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Motivation



Characteristic properties of ”evolved
thing” are function and robustness

A.Wagner: ”Robustness and Evolvability in Living
Systems” (2005)

Intuitively, highly optimized system may be
fragile.

Evolution is not simply an optimization process?



Robustness

Robustness against perturbation
Stability in development and differentiation:
Canalization (Waddington)

Epigenetic landscape

Protein folding: Anfinsen’s dogma, Funnel picture
(Go, Wolyness)

Energy landscape

Robustness against mutation
Function is not lost by mutation
Homologous protein



Prospect

Landscape picture of evolution
Consider evolution landscape, including phenotypes
not visited in the course of evolution
Evolutional pathway on the landscape

We consider a toy model of the gene regulatory
network

As the evolved system should be rare, we use
the rare event sampling method



Gene Regulatory Networks
(GRN)



Gene expression Gene regulation



Abstract model of GRN

A complex
network in which
the genes mutually
regulate by the
transcription
factors (TF)

TFs themselves
are proteins
made by the
gene expressions



Question

Character of the fitness landscape
Relation between the cooperative response to
outside and the robustness

Mutational robustness
Robustness against external/internal fluctuation
(number fluctuation of TF or other molecules)

Can we see any universal properties, if we classify
the randomly generated GRNs by fitness

Properties that do not depend on the
evolutional pathway



Model



Simple toy model of GRN having one input gene
and one output gene

cf. M. Inoue and K. Kaneko PLOS Compt.
Bio. 9(2013)e1003001

Directed random graph: N nodes、K edges

Node: Gene

Edge: Regulatory relation

Self regulation and mutual regulation are
excluded
The input node is randomly selected from the
nodes having paths to all the other nodes
The output node is selected from the nodes
faving paths from all the other nodes (Detail
will be given later)



I

O

GRN having one input node and one output node
and having no self and mutual regulations



Discrete-time dynamics (Neural-network like)

Xi(t + 1; I ) = R (I δj ,1 + ΣjJijXj(t; I ))

R(x) =
tanh x + 1

2

cf. A. Wagner: Evolution 50 (1996) 1008

Xi : Expression of ith gene ( [0, 1])

Jij : Regulation of ith gene by jth gene(0,±1)
+1: activation, −1: repression

I : Input from exterior world ([0, 1])

R(x) : Soft response function
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Response function

Spontaneour
expression is 0.5
(comparatively
large)
We want to
assemble a circuit
that can respond
sensitively to On
and Off of
external signal

cf. M. Inoue and
K. Kaneko:EPL
124 (2018)
38002



Required function

Sensitive response to On-Off change
of external signal

Since the response damps out for sequential
circuit, Feed-Forward type regulation is
indispensable

Both activation and repression are required



Fitness

X̄i(I ): Temporal average of the response of ith
gene (in the steady state)

Sensitivity of ith gene: Defference of the
response to I = 0 and 1

Si = |X̄i(1)− X̄i(0)|

The node having the largest sensitivity is
defined as the output node

Xout : X of the output node (response of the
network)

Fitnessf ≡ Sout : Sensitivity of the output node



Method (Multicanonical MC)



Ideal energy histgram
obtained by the

multicanonical MC

Sampling method
that gives a flat
distribution of
energy

Enable us to
sample
low-energy rare
states
Enable us to
calculate the
density of states



Detailed balance

wijP(Ej) = wjiP(Ei)

For ordinary Metropolis MC, P(E ) ∝ e−βE

We can use any P(E )

P(E ) ∝ e−f (E )

and we require

e−f (E ) ∼ 1

Ω(E )

:Weight f (E ) is determined through learning
process



Using the obtained energy histgram, we can
estimate DOS

Ω(E ) ∝ H(E )e f (E )

Divide E into bins
Piecewise linear approx. for f (E ): Multicanonical

B.A. Berg and T. Neuhaus: PRL 68 (1992) 9

Constant f (E ) in each bin: Entropic sampling
J. Lee: PRL 71 (1993) 211

Wang-Landau method for the learning process
used only for the entropic sampling

F. Wang and D.P. Landau: PRL 86 (2001) 2050



2D Ising Model
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2.07 (cf. true
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Application to non-energetic system

Eigenvalue distribution of random matrix
N. Saito, Y. Iba and K. Hukushima: PRE 82
(2010) 031142

Search for periodic orbits in a chaotic system
A. Kitajima and Y. Iba: Compt. Phys. Comm.
182 (2011) 251

Stability of a coupled chaotic map
N. Saito and M. Kikuchi: New J. Phys. 15 (2013)
053037

Enumeration of magic squares
A. Kitajima and M. Kikuchi: PLOS One 10 (2015)
e0125062



The first paper that discuss the evolutionary
landscape using multicanonical MC

”Robustness leads close to the edge of chaos in
coupled map networks: toward the understanding of
biological networks”
N. Saito and M. Kikuchi: New J. Phys. 15 (2013)
053037

Evolution and robustness of a coupled chaotic map
(an abstract model for GRN)



Application to GRN

Sampling that gives the flat distribution of
fitness

Divide the fitness (0 ∼ 1) into 100 bins

In principle, we can randomly sample GRNs
with several different values of fitness

Actually there are correlations between samples

Microcanonical ensemble within each bin



N = 16 ∼ 32
Average number of edges connected to each
nodeC ≡ 2N/K = 5, 6

We show results for C = 5 mainly



Results 1



Fitness Landscape
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There is a threshold of rareness
more than 95% in f < 0.2

GRNs having f larger than the threshold are
exponentially rare
f > 0.9 are more than exponentially rare

f > 0.99: The fittest ensemble

GRNs with high fitness are rare



Response in steady states
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Smooth
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Responses for f ∼ 0.7
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Responses of the fittest ensemble
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Appearance probability of two fixed points
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function and the
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99% of GRNs in
the fittest
ensemble have two
fixed points



As the fitness increases, the big jump that the
number of the fixed points changes takes place at
somewhere in the course of evolution, irrespective of
the evolutionary pathway

Universality of evolution

The fitness restricts the phenotype



dynamical response
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Robustness against the input noise
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Robustness against the internal noise
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Noise-induced ultra sensitivity
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Fixed points and the robustness

60% of the GRNs having two fixed-points can
respond properly to the sudden change of input

They are robust against both input and internal
noises
Some of the GRNs exhibit the noise-induced
ultrasensitivity

70% in total can respond properly to the input



Mutational robustness

Mutation of the single-edge deletion
A moderate mutation (e.g. slight change of TF)
We try all the possible mutations
Input/Output nodes are unchanged upon mutation



Distribution of the fitness f ′ after the
mutation
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Majority of the edges are neutral against
mutation
For the fittest ensemble, most of the edges are
either neutral or lethal

Intermediate edges are scarse
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Typical number of
the lethal edges is
6

Independent of
size
Larger GRNs are
relatively robust
Some GRNs
have no lethal
edge
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An example of GRN without a lethal edge



Results 2



Compare the results of evolutionary simulations
and the random sampling
Slightly different model just for simplicity

Allow both self and mutual regulation. Fixed
input/output nodes

Population: 1000
Keep 500 samples from the highest fitness. Apply
mutation to 500 copies
Perform 10000 runs and follow the evolutionary
path of the fittest sample



Generation and fitness
(fitting by tanh

Fitness landscape and
the speed of evolution



Speed of evolution is determined by entropy



Robustness index
For all the possible deletion of edges,

1

K

∑
edge

f ′

is defined as the robustness of each GRN



Robustness distribution
and the evolutionary

pathway

Avarage robustness and
evolutionary pathway



Distribution of the
robustness for the
fittest ensemble

Distribution of the
robustness for
samples just after
f > 0.99 is
attained for the
evolutionary
simulations.



Evolutionary process is divided into two stages
1 Entropic stage
2 Robustness-aquiring stage



Pathways for different
number of copies



Summary



GRNs of high fitness have the following features:
1 Ultrasensitivity (two stable fixed points)

A big jump irrespective of the evolutionary pathway
2 Three robustnesses

mutation
input noise
internal noise

Evolution enhances robustness


