Simultaneous Emergence of Cooperative Response and Mutational Robustness in Gene Regulatory Networks

Macoto Kikuchi and Shintaro Nagata

Osaka University, Japan

CCS2018

Motivation

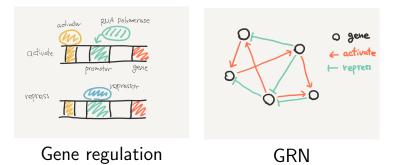
- Living systems exhibit high fitness and robustnesses simultaneously.
 - Robustness against mutation
 - Robustness against noise
- These robustnesses have been aquired through evolution.
 - The evolution is considered as something special

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Problem

Relationship between evolution and robustnesses

- We study a simple model of the gene regulatory network
 - without using evolutionary simulations
 - make an ensemble of GRNs with high fitness by Multi-canonical MC


• To explore the universal properties of highly fitted GRNs. The robustnesses in particular.

The gene regulatory network

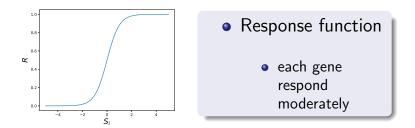
- The cell state is regulated by the expression levels of many genes adaptively to the environmental conditions.
- Gene expressions are regulated by the transcription factors (TF), which themselves are proteins produced from genes.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

• Genes are mutually regulated through TF

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Model


- Directed random graph with N nodes and K edges
 - Node: Gene
 - Edge: Regulatory relation
- 1 input gene and 1 output gene
- Average number of edges connected to a node is 2K/N = 5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discrete-time dinamics

$$S_i(t+1) = R\left(\sigma \delta_{i,1} + \Sigma_j J_{ij} S_j(t)
ight)$$

 $R(x) = rac{ anh x + 1}{2}$

- S_i : Expression of *i*th gene (continuus variable of [0, 1))
- J_{ij} : Interaction from *j*th to *i*th gene
 - $J_{ij} = \pm 1$ (activation or repression) or 0 (no regulation)
- σ : Input signal from outside

Effective response

- Consider the steady state
- Effective response of *i*th gene against the input

$$ar{S}_i[\sigma] \equiv rac{1}{T}\sum_{t= au}^{ au+ au} S_i(t)$$

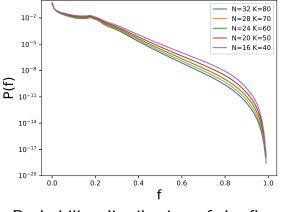
Fitness

 σ

• Sensitivity of gene i

$$\Delta_i = |\bar{S}_i[1] - \bar{S}_i[0]|$$

 $f \equiv max\{\Delta_i\}$

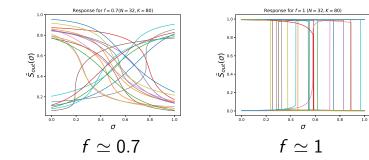

Method

Rare event sampling by the Multicanonical ensemble Monte Carlo method regarding the fitness f as energy

• It ebables us to sample GRNs in a wide range of fitness randomly (in principle).

• Wang-Landau method for determining the Monte Carlo weight

Fitness Landscape



Probability distribution of the fitness

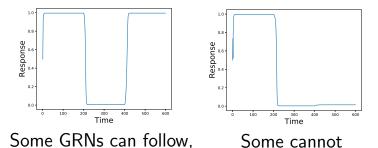
・ロト ・聞ト ・ヨト ・ヨト

æ

Steady-State Response

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Emergence of fixed-point switching

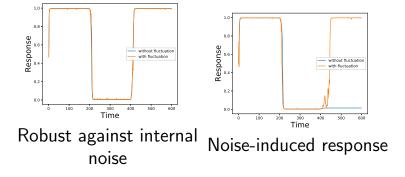

- For $f \simeq 1$, all the networks have two fixed points
- Emergence of the cooperative response to the input using the fixed point switching mechanism
 - A kind of inovation takes place inevitably for highly fitted GRNs.

Question

• Then, can they respond properly to the rapid change of input?

Dynamical Response

Response to abruptly changing input



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Effect of Internal Noise

• Consider the number flucturations of TFs as the internal noise.

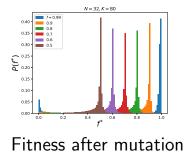
$$S_i(t)
ightarrow S_i(t) + r_i$$

 r_i : uniform random number in $[-0.1, 0.1]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

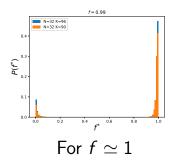
 $\bullet~w/o$ noise: \sim 60% of GRNs can respond sensitively

• They are robust against internal noise

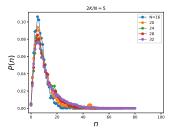

• w noise: \sim 74% of GRNs can respond sensitively

• Noise-Induced sensitive response

Internal noise makes GRNs to respond properly


(日)、(四)、(E)、(E)、(E)

Robustness against mutation


- Consider single-edge deletion
 - A moderate mutation

• All the possible cuts are tried

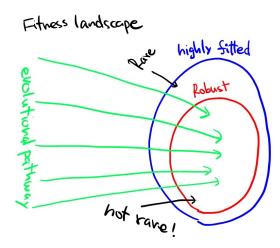
- Majority of edges are neutral
- Small number of edges are lethal
- No intermediate edge

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Number distribution of lethal edges

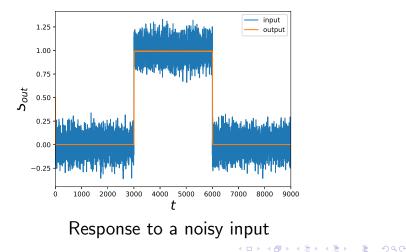
- Small number of lethal edges
- The peak is independent of N
 - Larger GRNs are relatively robust

э


Summary

Result

- For the GRNs with high fitness, we found that the majority of the networks own the following robustnesses
 - Mutational Robustness
 - Pobustness against internal noise
 - 8 Robustness against input noise (not shown)


Proposal

 These robustnesses are not the consequence of the evolution, but the characteristic properties accompanying to the high fitness irrespective to the pathway of evolution

・ロト・日本・日本・日本・日本・日本

Rubustness ageinst input noise

